SOLUTION

a)	x = 3	or	$x = -\frac{2}{5}$
	x - 3 = 0	or	$x + \frac{2}{5} = 0$ Getting 0's on one side
	$(x-3)\left(x+\tfrac{2}{5}\right)$	= 0	Using the principle of zero products (multiplying)
x	$x^2 + \frac{2}{5}x - 3x - 3 \cdot \frac{2}{5}$	= 0	Multiplying
	$x^2 - \frac{13}{5}x - \frac{6}{5}$	= 0	Combining like terms
	$5r^2 - 13r - 6$	= 0	Multiplying both sides by 5 to clear fractions

Note that multiplying both sides by the LCD, 5, clears the equations of fractions. Had we preferred, we could have multiplied $x + \frac{2}{5} = 0$ by 5, thus clearing fractions *before* using the principle of zero products.

b)
$$x = 2i$$
 or $x = -2i$

x - 2i = 0 or x + 2i = 0Getting 0's on one side (x - 2i)(x + 2i) = 0 Using the principle of zero products (multiplying) $x^2 - (2i)^2 = 0$ Finding the product of a sum and a difference $x^2 - 4i^2 = 0$ $x^2 + 4 = 0$ $i^2 = -1$ $x = 5\sqrt{7}$ or $x = -5\sqrt{7}$ $x - 5\sqrt{7} = 0$ or $x + 5\sqrt{7} = 0$ Getting 0's on one side c) $(x - 5\sqrt{7})(x + 5\sqrt{7}) = 0$ $x^2 - (5\sqrt{7})^2 = 0$ Using the principle of zero products Finding the product of a sum and a difference $x^2 - 25 \cdot 7 = 0$ $x^2 - 175 = 0$ $x = -4 \quad or \quad x = 0 \quad or \quad x = 1$ **d**) x + 4 = 0 or x = 0 or x - 1 = 0Getting 0's on one side (x + 4)x(x - 1) = 0 Using the principle of zero products

Multiplying

Teaching Tip Students tend to ignore the

factor x. In Example 2(d), you may want to emphasize that if 0 is a solution, then x is a factor.

Try Exercise 29.

 $x(x^2 + 3x - 4) = 0$

 $x^3 + 3x^2 - 4x = 0$

For each equation, determine what type of number the solutions are and how many solutions exist.

7. $x^2 - 7x + 5 = 0$	8. $x^2 - 5x + 3 = 0$
Two irrational	Two irrational
9. $x^2 + 3 = 0$	10. $x^2 + 5 = 0$
$11 r^2 - 5 - 0$	Two imaginary
Two irrational	12. $x^2 - 3 = 0$
13. $4x^2 + 8x - 5 = 0$	14. $4x^2 - 12x + 9 = 0$
Two rational	One rational
15. $x^2 + 4x + 6 = 0$	16. $x^2 - 2x + 4 = 0$
Two imaginary	Two imaginary
17. $9t^2 - 48t + 64 = 0$	18. $6t^2 - 19t - 20 = 0$
$19, 9t^2 - 3t = 0$	$20 4m^2 + 7m = 0$
Two rational	Two rational
21. $x^2 + 4x = 8$	22. $x^2 + 5x = 9$
Two irrational	Two irrational
23. $2a^2 - 3a = -5$	24. $3a^2 + 5 = 7a$
$75 7r^2 = 19r$	1 Wo imaginary $26 5x^2 - 48x$
Two rational	20. 5x - 46x Two rational
27. $y^2 + \frac{9}{4} = 4y$	28. $x^2 = \frac{1}{2}x - \frac{3}{5}$
Two irrational	Two imaginary

Ahe

Write a quadratic equation having the given numbers as solutions.

- **29.** -7, 3 $x^2 + 4x 21 = 0$ **30.** -6, 4 $x^2 + 2x 24 = 0$
- **31.** 3, only solution (*Hint*: It must be a repeated solution.) $x^2 - 6x + 9 = 0$ **32.** -5, only solution $x^2 + 10x + 25 = 0$
- 33. $-1, -3 \ x^{2} + 4x + 3 = 0$ 34. $-2, -5 \ x^{2} + 7x + 10 = 0$ 35. $5, \frac{3}{4} \ 4x^{2} - 23x + 15 = 0$ 36. $4, \frac{2}{3} \ 3x^{2} - 14x + 8 = 0$ 37. $-\frac{1}{4}, -\frac{1}{2} \ 8x^{2} + 6x + 1 = 0$ 38. $\frac{1}{2}, \frac{1}{3} \ 6x^{2} - 5x + 1 = 0$ 39. $2.4, -0.4 \ x^{2} - 2x - 0.96 = 0$ 40. $-0.6, 1.4 \ x^{2} - 0.8x - 0.84 = 0$ 41. $-\sqrt{3}, \sqrt{3} \ x^{2} - 3 = 0$ 42. $-\sqrt{7}, \sqrt{7} \ x^{2} - 7 = 0$ 43. $2\sqrt{5}, \frac{-2}{x^{2}} - \frac{\sqrt{5}}{20}$ 44. $3\sqrt{2}, \frac{-3}{\sqrt{2}} - \frac{\sqrt{5}}{20}$ 45. $4i, -4i \ x^{2} + 16 = 0$ 46. $3i, -3i \ x^{2} + 9 = 0$ 47. $2x^{2} - \frac{7i}{4x} + \frac{53}{51} = 0$ 48. $5 - 2i, 5 + \frac{22i}{x^{2} - 10x} + 29 = 0$ 49. $3 - \sqrt{14}, 3 + \sqrt{14} \ x^{2} - 6x - 5 = 0$ 50. $2 - \sqrt{10}, 2 + \sqrt{10} \ x^{2} - 4x - 6 = 0$ 51. $1 - \frac{\sqrt{21}}{3}, 1 + \frac{\sqrt{21}}{3} \ 3x^{2} - 6x - 4 = 0$ 52. $\frac{5}{4} - \frac{\sqrt{33}}{4}, \frac{5}{4} + \frac{\sqrt{33}}{4} \ 2x^{2} - 5x - 1 = 0$

Write a third-degree equation having the given numbers as solutions.

53. -2, 1, 5	•	54. -5, 0, 2	•
55. -1, 0, 3		56. −2, 2, 3	ŀ

- № 57. Explain why there are not two different solutions when the discriminant is 0.
 - ☑ Answers to Exercises 53–56 are on p. IA-17.

1N 58. While solving a quadratic equation of the form $ax^2 + bx + c = 0$ with a graphing calculator, Amberley gets the following screen. How could the sign of the discriminant help her check the graph?

SKILL REVIEW

To prepare for Section 8.4, review solving formulas and solving motion problems (Sections 3.3, 6.5, and 6.8). Solve each formula for the specified variable. [6.8]

59.
$$\frac{c}{d} = c + d$$
, for $c = \frac{d^2}{1 - d}$
60. $\frac{p}{q} = \frac{a + b}{b}$, for $b = \frac{aq}{p - q}$
61. $x = \frac{3}{1 - y}$, for $y = \frac{x - 3}{x}$, or $1 - \frac{3}{x}$

Solve.

- **62.** *Boating.* Kiara's motorboat took 4 hr to make a trip downstream with a 2-mph current. The return trip against the same current took 6 hr. Find the speed of the boat in still water. [3.3] 10 mph
- **63.** *Walking.* Jamal walks 1.5 mph faster than Kade. In the time it takes Jamal to walk 7 mi, Kade walks 4 mi. Find the speed of each person. [6.5]
- **64.** Aviation. Taryn's Cessna travels 120 mph in still ⁰ air. She flies 140 mi into the wind and 140 mi with the wind in a total of 2.4 hr. Find the wind speed. [6.5] 20 mph

SECTION 8.4 Applications Involving Quadratic Equations 619

SYNTHESIS

- **65.** If we assume that a quadratic equation has integers for coefficients, will the product of the solutions always be a real number? Why or why not?
- **1W** 66. Can a fourth-degree equation have exactly three irrational solutions? Why or why not?
 - 67. The graph of an equation of the form

$$y = ax^2 + bx + c$$

is a curve similar to the one shown below. Determine a, b, and c from the information given.

68. Show that the product of the solutions of $ax^2 + bx + c = 0$ is c/a.

For each equation under the given condition, (a) find k and (b) find the other solution. 69. $kx^2 - 2x + k = 0$; one solution is -3 (a) $-\frac{3}{5}$; (b) $-\frac{1}{3}$ 70. $x^2 - kx + 2 = 0$; one solution is 1 + i (a) 2; (b) 1 - i

71. $x^2 - (6 + 3i)x + k = 0$; one solution is 3 (a) 9 + 9i; (b) 3 + 3i

⊡ Answers to Exercises 68, 72, and 73 are on p. IA-17.

- 72. Show that the sum of the solutions of $ax^2 + bx + c = 0$ is -b/a.
- 73. Show that whenever there is just one solution of $ax^2 + bx + c = 0$, that solution is of the form -b/(2a).
- 74. Find h and k, where $3x^2 hx + 4k = 0$, the sum of the solutions is -12, and the product of the solutions is 20. (*Hint*: See Exercises 68 and 72.) h = -36, k = 15
- 75. Suppose that $f(x) = ax^2 + bx + c$, with $f(-3) = 0, f(\frac{1}{2}) = 0$, and f(0) = -12. Find *a*, *b*, and *c*. a = 8, b = 20, c = -12
- 76. Find an equation for which $2 \sqrt{3}$, $2 + \sqrt{3}$, 5 - 2i, and 5 + 2i are solutions. $x^4 - 14x^3 + 70x^2 - 126x + 29 = 0$
- Anal 77. Write a quadratic equation with integer coefficients for which $-\sqrt{2}$ is one solution. $x^2 2 = 0$
 - **78.** Write a quadratic equation with integer coefficients for which 10i is one solution. $x^2 + 100 = 0$
- 79. Find an equation with integer coefficients for which $1 \sqrt{5}$ and 3 + 2i are two of the solutions. $x^4 - 8x^3 + 21x^2 - 2x - 52 = 0$ **80.** A discriminant that is a perfect square indicates
- **80.** A discriminant that is a perfect square indicates that factoring can be used to solve the quadratic equation. Why?
 - Try Exercise Answers: Section 8.3
 - 7. Two irrational 29. $x^2 + 4x 21 = 0$

Applications Involving Quadratic Equations

Solving Problems

8.4

Solving Formulas

SOLVING PROBLEMS

Some problems translate to rational equations. The solution of such rational equations can involve quadratic equations.

EXAMPLE 1 Motorcycle Travel. Keisha rode her motorcycle 300 mi at a certain average speed. Had she averaged 10 mph more, the trip would have taken 1 hr less. Find Keisha's average speed.