Teaching Tip

Students tend to ignore the factor x. In Example 2(d), you may want to emphasize that if 0 is a solution, then x is a factor.

SOLUTION

a)

$$
\begin{array}{rll}
x=3 & \text { or } & x=-\frac{2}{5} \\
x-3=0 & \text { or } & x+\frac{2}{5}=0 \quad \text { Getting } 0 \text { 's on one side } \\
(x-3)\left(x+\frac{2}{5}\right)=0 & \text { Using the principle of zero products (multiplying) } \\
x^{2}+\frac{2}{5} x-3 x-3 \cdot \frac{2}{5}=0 & \text { Multiplying } \\
x^{2}-\frac{13}{5} x-\frac{6}{5}=0 & \text { Combining like terms } \\
5 x^{2}-13 x-6=0 & \text { Multiplying both sides by } 5 \text { to clear fractions }
\end{array}
$$

Note that multiplying both sides by the LCD, 5 , clears the equations of fractions. Had we preferred, we could have multiplied $x+\frac{2}{5}=0$ by 5 , thus clearing fractions before using the principle of zero products.
b)

$$
\begin{aligned}
& x=2 i \quad \text { or } \quad x=-2 i \\
& x-2 i=0 \quad \text { or } \quad x+2 i=0 \quad \text { Getting } 0 \text { 's on one side } \\
& (x-2 i)(x+2 i)=0 \quad \text { Using the principle of zero products (multiplying) } \\
& x^{2}-(2 i)^{2}=0 \quad \text { Finding the product of a sum and a difference } \\
& x^{2}-4 i^{2}=0 \\
& x^{2}+4=0 \quad i^{2}=-1
\end{aligned}
$$

c) $\quad x=5 \sqrt{7}$ or $\quad x=-5 \sqrt{7}$
$x-5 \sqrt{7}=0 \quad$ or $\quad x+5 \sqrt{7}=0 \quad$ Getting 0 's on one side $(x-5 \sqrt{7})(x+5 \sqrt{7})=0 \quad$ Using the principle of zero products
$x^{2}-(5 \sqrt{7})^{2}=0 \quad$ Finding the product of a sum and a difference
$x^{2}-25 \cdot 7=0$
$x^{2}-175=0$
d) $\quad x=-4$ or $x=0$ or $\quad x=1$ $x+4=0 \quad$ or $x=0$ or $x-1=0 \quad$ Getting 0 's on one side

$$
\begin{aligned}
(x+4) x(x-1) & =0
\end{aligned} \quad \text { Using the principle of zero products }
$$

Try Exercise 29.

Concept Reinforcement

 following statements.1. In the quadratic formula, the expression $b^{2}-4 a c$ is called the \qquad discriminant —.
2. When $b^{2}-4 a c$ is 0 , there is/are \qquad solution(s).
3. When $b^{2}-4 a c$ is positive, there is/are
\qquad solution(s).
4. When $b^{2}-4 a c$ is negative, there is/are
\qquad solution(s).
5. When $b^{2}-4 a c$ is a perfect square, the solutions are rational numbers.
6. When $b^{2}-4 a c$ is negative, the solutions are imaginary numbers.

For each equation, determine what type of number the solutions are and how many solutions exist.
7. $x^{2}-7 x+5=0$
8. $x^{2}-5 x+3=0$
9. $x^{2}+3=0$

Two imaginary
11. $x^{2}-5=0$
3. Two irrational $4 x^{2}+8 x-$
10. $x^{2}+5=0$
10. $x^{2}+5=0$

Two imaginary
12. $x^{2}-3=0$
$5=0$
14. $4 x^{2}-12 x+9=0$

Two rational
One rational
15. $x^{2}+4 x+6=0$
16. $x^{2}-2 x+4=0$

Two imaginary
18. Two imaginary
17. $9 t^{2}-48 t+64=0$

One rational
18. $6 t^{2}-19 t-20=0$
9. $9 t^{2}-3 t=0$
20. $4 m^{2}+7 m=0$

Two rational
21. $x^{2}+4 x=8$ Two irrational
23. $2 a^{2}-3 a=-5$
5. Two imaginary
25. $7 x^{2}=19 x$
27. $y^{2}+\frac{9}{4}=4 y$
22. $x^{2}+5 x=9$
24. $3 a^{2}+5=7 a$

Two imaginary
26. $5 x^{2}=48 x$
28. Two rational $x^{2}=\frac{1}{2} x-\frac{3}{5}$

Two imaginary

Write a quadratic equation having the given numbers as solutions.
29. $-7,3 x^{2}+4 x-21=0$
30. $-6,4 x^{2}+2 x-24=0$
31. 3, only solution
32. -5 , only solution $x^{2}+10 x+25=0$
(Hint: It must be a $x^{2}-6 x+9=0$
33. $-1,-3 x^{2}+4 x+3=0$
34. $-2,-5$
35. $5, \frac{3}{4} 4 x^{2}-23 x+15=0$
36. $4, \frac{x^{2}}{3} 3 x^{2}-14 x+10=0$
37. $-\frac{1}{4},-\frac{1}{2} 8 x^{2}+6 x+1=0$
38. $\frac{1}{2}, \frac{1}{3} 6 x^{2}-5 x+1=0$
39. $2.4,-0.4_{2}$
40. $-0.6,1.4$
41. $-\sqrt{3}, \sqrt[x^{2}]{3}-2 x-0.96$
42. $\sqrt{7} \sqrt{x^{2}}-0.8 x-0.84=0$
43. $2 \sqrt{5},-2 \sqrt{5}-20=0$
44. $3 \sqrt{2},-3 \sqrt{2}$
45. $4 i,-4 i \quad x^{2}+16=0$
46. $3 i,-3 i \quad x^{2}+9=0$
47. $2-7 i, 2+7 i=0$
48. $5-2 i, 5+{ }_{x}^{2} 2 i-10 x+29=0$
49. $3-\sqrt{14}, 3+\sqrt{14}$
$x^{2}-6 x-5=0$
50. $2-\sqrt{10}, 2+\sqrt{10}$
$x^{2}-4 x-6=0$
51. $1-\frac{\sqrt{21}}{3}, 1+\frac{\sqrt{21}}{3} 3 x^{2}-6 x-4=0$
52. $\frac{5}{4}-\frac{\sqrt{33}}{4}, \frac{5}{4}+\frac{\sqrt{33}}{4} \quad 2 x^{2}-5 x-1=0$

Write a third-degree equation having the given numbers as solutions.
53. $-2,1,5$
54. $-5,0,2$
55. $-1,0,3$
56. $-2,2,3$

TW 57. Explain why there are not two different solutions when the discriminant is 0 .

N 58. While solving a quadratic equation of the form
$a x^{2}+b x+c=0$ with a graphing calculator, Amberley gets the following screen. How could the sign of the discriminant help her check the graph?

SKILL REVIEW

To prepare for Section 8.4, review solving formulas and solving motion problems (Sections 3.3, 6.5, and 6.8).
Solve each formula for the specified variable. [6.8]
59. $\frac{c}{d}=c+d$, for $c \quad c=\frac{d^{2}}{1-d}$
60. $\frac{p}{q}=\frac{a+b}{b}$, for $b \quad b=\frac{a q}{p-q}$
61. $x=\frac{3}{1-y}$, for $y \quad y=\frac{x-3}{x}$, or $1-\frac{3}{x}$

Solve.
62. Boating. Kiara's motorboat took 4 hr to make a trip downstream with a 2 -mph current. The return trip against the same current took 6 hr . Find the speed of the boat in still water. [3.3] 10 mph
63. Walking. Jamal walks 1.5 mph faster than Kade. In the time it takes Jamal to walk 7 mi , Kade walks 4 mi . Find the speed of each person. [6.5]

Jamal: 3.5 mph ; Kade: 2 mph
64. Aviation. Taryn's Cessna travels 120 mph in still air. She flies 140 mi into the wind and 140 mi with the wind in a total of 2.4 hr . Find the wind speed.
[6.5] 20 mph

[^0]
SYNTHESIS

1.- 65. If we assume that a quadratic equation has integers for coefficients, will the product of the solutions always be a real number? Why or why not?

TW 66. Can a fourth-degree equation have exactly three irrational solutions? Why or why not?
67. The graph of an equation of the form

$$
y=a x^{2}+b x+c
$$

is a curve similar to the one shown below. Determine a, b, and c from the information given.
$a=1, b=2, c=-3$

68. Show that the product of the solutions of $a x^{2}+b x+c=0$ is c / a.
For each equation under the given condition, (a) find k and (b) find the other solution.
69. $k x^{2}-2 x+k=0$; one solution is -3 (a) $-\frac{3}{5}$; (b) $-\frac{1}{3}$
70. $x^{2}-k x+2=0$; one solution is $1+i$ (a) 2 ; (b) $1-i$
71. $x^{2}-(6+3 i) x+k=0$; one solution is 3
(a) $9+9 i$; (b) $3+3 i$

Answers to Exercises 68, 72, and 73 are on p. IA-17.
72. Show that the sum of the solutions of $a x^{2}+b x+c=0$ is $-b / a$.
73. Show that whenever there is just one solution of $a x^{2}+b x+c=0$, that solution is of the form $-b /(2 a)$.
74. Find h and k, where $3 x^{2}-h x+4 k=0$, the sum of the solutions is -12 , and the product of the solutions is 20. (Hint: See Exercises 68 and 72.) $h=-36, k=15$
75. Suppose that $f(x)=a x^{2}+b x+c$, with $f(-3)=0, f\left(\frac{1}{2}\right)=0$, and $f(0)=-12$. Find a, b, and $c . \quad a=8, b=20, c=-12$
76. Find an equation for which $2-\sqrt{3}, 2+\sqrt{3}$, $5-2 i$, and $5+2 i$ are solutions.
$x^{4}-14 x^{3}+70 x^{2}-126 x+29=0$
77. Write a quadratic equation with integer coefficients for which $-\sqrt{2}$ is one solution. $\quad x^{2}-2=0$
78. Write a quadratic equation with integer coefficients for which $10 i$ is one solution. $\quad x^{2}+100=0$
79. Find an equation with integer coefficients for which $1-\sqrt{5}$ and $3+2 i$ are two of the solutions.
80. A discriminant that is a perfect square indicates that factoring can be used to solve the quadratic equation. Why?

Try Exercise Answers: Section 8.3
7. Two irrational 29. $x^{2}+4 x-21=0$

8.4 Applications Involving Quadratic Equations

- Solving Problems

- Solving Formulas

SOLVING PROBLEMS

Some problems translate to rational equations. The solution of such rational equations can involve quadratic equations.

EXAMPLE 1 Motorcycle Travel. Keisha rode her motorcycle 300 mi at a certain average speed. Had she averaged 10 mph more, the trip would have taken 1 hr less. Find Keisha's average speed.

[^0]: \square Answers to Exercises 53-56 are on p. IA-17.

